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ABSTRACT 

The advent of nuclear weapons has resulted in the need for 

shallow-burled protective structures capable of surviving ground 

shock and associated loadings induced by high-intensity nuclear air- 

blasts     The design of such structures requires a knowledge of the 

behavior of their foundations under rapidly applied transient loads. 

The purpose of this investigation was to determine if nondimen- 

sional relations developed previously by the application of simili- 

tude theory and dimensional analysis for dynamically loaded surface 

footings on clay also hold for dynamically loaded footings at shallow 

depth of burial and to determine the effect of shallow burial on the 

footing response. 

The results of the investigation showed that the nondlmensional 

relations developed for surface footings on clay also hold for foot- 

ings at shallow depth of burial.    The effect of shallow burial on the 

response of dynamically loaded footings in clsy is small and can be 

considered negligible for design purposes. 



PREFACE 

This investigation was conducted by the U. S. Array Engineer 

Waterways Experiment Station (WES) under the sponsorship of the De- 

fense Atomic Support 'igency (Nuclear Weapons Effects Research Subtask 

RSS3210010C).    The testing was conducted during the period January to 

April 1967*    The tests were conducted and the report prepared under 

the supervision of Mr. P. F. Hadala and the general direction of 

Messrs. W. J. Turnbull, A. A. Maxwell, R. W. Cunny, and J. G. Jackson, 

Jr., of the Soils Division. 

The test program was planned üy Mr. E. B. Perry, and executed by 

Mr. R. C. Sloan. Messrs. B. F. Wright, B. C. Palmertree, A. G. Reno, 

and P. L. Marslcano assisted in the conduct of the tests and data re- 

duction. 

This report was prepared by Mr. Perry, and the material contained 

herein was submitted as a thesis in partial fulfillment of the re- 

quirements for the degree of Master of Science in Civil Engineering 

to Mississippi State University, State College, Mississippi. 

COL John R. Oswalt, Jr., CE, and COL Levi A. Brown, CE, were 

Directors of the WES during this investigation.    Mr. J. B. Tiffany 

was Technical Director. 
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 

British units of measurement used in this report can be converted to 
metric units as follows. 

Multiply By To Obtain 

inches 2.5^ centimeters 

feet O.30U8 meters 

pounds O.U5359237 kilograms 

kips '♦53.59237 kilograms 

kips per square foot k,622.k kilograms per square 
meter 

pounds per cuoic foot 16.018 kilograms per cubic 
meter 

inches per minute 25.^ millimeters per 
minute 

inches per second 25.k millimeters per 
second 

inches per second per second 25.u millimeters per second 
per second 

8 
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CHAPTER 1 

INTRODUCTION 

1.1    BACKGROUND 

The advent of nuclear weapons has resulted in the need for 

shallow-burled protective structures capable of surviving ground 

shock and associated loadings induced by high-intensity nuclear air- 

blasts.    The design of such structures requires a knowledge of the 

behavior of their foundations under rapidly applied transient loads. 

In order to assist in the development of foundation design cri- 

teria for protective structures, a study of the dynamic bearing ca- 

pacity of soils was initiated at the U. S. Amy Engineer Waterways 

Experiment Statior,  (WES).    The purpose of this study was to develop 

the relations between blast-type time histories for footings and the 

resulting footing displacement.    Small-scale footing tests were con- 

ducted using a loading machine that delivered controlled dynamic load 

pulses to footings in soil specimens contained in large movable carts 

(References 1-6). 

In the WES studies, email-scale surface footing tests were con- 

ducted on sand to investigate the mode of failure and soil motions 

during the displacement of a dynamically loaded surface footing 

(Reference 2).    The results of these tests indicated that the behavior 

patterns under dynamic loads were quite different from conventional 



static bearing capacity failure patterns.    Because the dynamic footing 

test data did not appear to fit classical failure theories, a new 

approach to the problem of predicting the displacement of dynamically 

loaded footings was undertaken.    A prototype system that would be 

suitable for eventual full-scale field testing was chosen.    The sys- 

tem consisted of a central surface footing on clay supporting a 

blast-loaded structure.    Models of the postulated prototype were de- 

veloped using the principles of similitude and tested using the dy- 

namic loading machine and compacted clay specimens In mobile soil 

specimen carts. 

The analysis of the results of the dynamic tests using nondlmen- 

sional parameters yielded three useful relations:    maximum footing 

load reaction as a function of maximum displacement, maximum dis- 

placement as a function of the dynamic load applied to the roof of 

the structure, and time to maximum displacement as a function of the 

dynamic load applied to the roof of the structure  (Reference 3).    The 

validity of these nondlmensional relations was established in another 

study that showed that they were Independent of the model seeding re- 

lations (Reference k). 

A simplified model of a field test structure was developed, and 

verified by comparison of the results of tests of the small-scale 

model with the results of tests of the actual prototype  (Reference 6). 

10 
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1.2 PURPOSES OP THIS INVESTIGATION 

The purposes of this investigation were to determine if the form 

of the nondimensional relations developed previously for dynamically 

loaded surface footings on clay also holds for dynamically loaded 

footings at shallow depth of burial (depth of burial equal to one 

footing width), and to determine the effect of shallow depths of bur- 

ial on the three nondimensional relations developed for surface 

footings. 

1.3 SCOPE OF THIS INVESTIGATION 

The test program was limited to a study of the response of square 

footings to dynamic axial loads of finite duration at a depth of bur- 

ial equal to one footing width. One static and five dynamic footing 

tests were conducted on U.5-inch -wide square footings in a highly 

plastic, nearly saturated, compacted clay that had a static shear 

strength of approximately 1.10 kips per square foot. A similar series 

of tests was also conducted on 8-inch-wide footings in clay that had 

a static shear strength of 1.U5 kips per square foot. 

A table cf factors for converting British units of measurement to 

metric units is presented on page 8. 

11 
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CHAPTER 2 

REVIEW OF PREVIOUS RESEARCH 

2.1    STATIC FOOTING RESPONSE IN CLAY 

There is considerable published literature concerning the bearing 

capacity and settlement of foundations in clay.    A review of small- 

scale footing studies covering the literature until i960 is presented 

in Reference ?•    Some of the more recent research is summarized in 

References 8 and 9. 

This review is limited to research concerning the effect of 

depth of burial on the response of footings in clay.    A solution is 

given in Reference 10 to obtain the bearing capacity of foundations 

in clay; this solution was based on laboratory footing tests, theo- 

retical solutions to the bearing capacity problem for surface and 

deep footings, and observations of full-scale foundation failures. 

This solution (see Figure 2.1) for square footings at a depth of bur- 

ial equal to one footing width, as used in this investigation, shows 

an increase in bearing capacity of approximately 25 percent over the 

bearing capacity of surface footings.    This relation, however, is 

based on a rather limited number of laboratory tests conducted in re- 

molded London clay (Reference 11).    In thene tests the effect of 

depth of burial was studied on 0.5-inch-diameter footings, with two 

tests each conducted at depths of burial equal to 0.5 and k footing 

12 
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diameters.    The tests utilized constant rates of penetration of 0.2 

to 1.2 inches per minute with a typical test lasting between 5 and 10 

minutes.    The shear strength of the soil was determined by unconfined 

compression tests and was found to range from 0.15 to 0.^5 kip per 

square foot. 

2.2   DYNAMIC FOOTING RESPONSE IN CLAY 

Research concerning the dynamic response of footings in clay is 

summarized in References 12 and 13.    To the author's knowledge, there 

has been no research concerning the effects of depth of burial on the 

response of footings in clay voider dynamic loading. 

13 
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CHAPTER 3 

FOOTING TESTS 

3.1   DEVELOPMENT OF NONDIMENSIONAL RELATIONS 

The application of similitude theory and dimensional analysis to 

footing tests is reported in Reference 3.    The variables that were 

developed and are believed to significantly affect the displacement 

response of the test system in this investigation, as shown in 

Figure 3.1, are listed in the following tabulation: 

Variable Definition Units 

z Displacement of footing L 

b Footing width L 

D Depth of burial L 

P Applied dynamic column load F 

K Toted pulse time T 

t Other characteristic time T 

Tf Shear strength of soil PL"2 

P Mass density of soil FA"
1
* 

m Mass of load column of 
dynamic loading machine 

FTV
1 

The nine variables can be rewritten in terms of six dimension- 

less parameters as follows: 

z 
b 

f(D     _t        P_      m       Pt2 \ ,_ .v 
V* ' tÄ * ZK   ' V3    ' bm   / ^'i■, v o     b T-     b p ' 

15 



where 

2 
- * displacement parameter 
D 

- = depth of burial parameter 

r- = time parameter 
to 

P ratio of applied live-load force to soil-resistance force, 
.2     ' or strength parameter 

-r— ■ ratio of structural mass to soil mass, or mass parameter 

p 
Pb ratio of applied live-load force to inertia force, or 
tarn    ~ inertia parameter 

From the free-body diagram in Figure 3.1, the relation between 

the load   R(t)    delivered to the footing and the dynamic driving 

force    P(t)   is given as 

P(t) - R(t) = m(a - g) (3.2) 

where 

P't) a dynamic column load 

R(t) = footing reaction 

m ■ mass of load column 

a = acceleration of system 

g = gravitational acceleration 

Since the masses of the footings tested were small, R(t) essen- 

tially represented the soil-resistance force opposing footing 

16 
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displacement.    This can be expressed in diroensionless form as 

R    _ ratio of average stress on base of footing to soil 
v2     ~ shearing resistance, or resistance parajneter 

The analysis of static and dynamic surface footing tests in Ref- 

erence 3 yielded the dimensionless footing reaction-displacement re- 

lation shown in Figure 3.2.    The second nondlmensional relation for 

surface footings, involving the maximum dynamic column load and the 

maxlimm displacement, is shown in Figure 3.3.    The third dimension- 

less relation, between maximum applied dynamic column load and time to 

maximvim displacement for the surface footings, is shown in Figure 3.1+. 

The validity of these nondlmensional relations was established by 

additional tests (Reference k), and their application in predicting 

the response of a footing during a field test is reported in Refer- 

ence 6. 

3.2    PLAN OF TESTS 

A test program (see Table 3-1) of 10 dynamic footing tests at 

depths equal to one footing width was planned to determine if the 
0 

nondlmensional relations developed for dynamically loaded surface 

footings on clay were applicable at shallow depth of burial and to 

evaluate the effects of the shallow burial on footing response.    The 

maximum dynaaiic input and input rise times, hold times, and total 

pulse times, shown in Table 3.2, were determined from the idealized 

17 



dynamic column load-time curves In Appendix D. The description of 

the soil and soil specimen construction Is given In Appendix A. The 

test system, the dynamic and static test procedures, and the soil 

sampling and testing procedures employed are described In Appendix B. 

3.3 TEST RESULTS 

The results of soil testing during specimen construction and 

unconflned compression and unconsolldated-undralned triaxlal tests on 

undisturbed block samples taken from the soil carts are given in 

Appendix C. Detailed results of the footing tests, given in Appen- 

dix D, show computed column load, column acceleration, load cell 

reaction, and average footing displacement time histories for the 

dynamic tests (Figures D.l to D.10). Load cell reaction versus aver- 

age footing displacement for dynamic and static tests is also given 

(see Figures D.ll and D.12). The results of the footing tests are 

summarized in Table 3.2. 

3.U COMPARISON OF NONDIMENSIONAL RELATIONS 

The resistance parameter versus the displacement parameter is 

shown in Figure 3.5« The dotted band is the range of the data for 

dynamic surface footing tests. The points represent the values of 

R        z 
-5™" and -2S£ f0r the IQ dynamic footing tests at shallow depth of 
bTf 

burial. Eight of the 10 data points fall within the band, with the 

18 
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remaining two falling slightly above the band.   The static resistance 

versus displacement curves are also shown In Figure 3.5«    The 

hatched band represents the range of the data for static surface 

footing tests.    The results of the static tests at shallow depth of 

burial fall within the band. 

The relation between the strength parameter and displacement 

parameter Is shown In Figure 3,6.    Five of the 10 data points for 

the shallow depth of burial fall within the range of values for the 

surface footings.    Of the remaining five points, four are slightly 

above the range and one at a relatively small displacement is Just 

below the range. 

The strength parameter versus Inertia parameter is given in 

Figure 3.7.    Seven of the 10 data points fall within the range of 

values, with the three remaining points falling close to the range. 

3.5    EFFECT OF SHALLOW DEPTH OF BURIAL 

The form of the nondlmenslonal relations developed for dynami- 

cally loaded surface footings on clay also holds for dynamically 

loaded footings at shallow depth of burial.    The effect of shallow 

depth of burial on the nondlmenslonal relations is small and can be 

considered negligible for design purposes. 

19 
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TABLE 3.2    TEST RESULTS - CONTROLLED AMD DrPENDEMT PARrtMETERS FOR FOOTINO TESTS 

_ 

Controlled Parameters 

Teat 
No. 

T"»t 
Loaation 

Plate 
Width 

Estimated 
Shear 
Strength 

Estimated 
Wet Unit 
Weight 

V 

Maximum 
Dynamic 
Input 
Pmax 

Input 
Rise 
Time 

'r 

Input 
Hold 
Tims 

\ 

Total 
Pulse 
Tine 

in. kips/sq ft pcf kips msec msec msec 

58-1 2+00 8.0 1.60 U8.lt 8.33 U 0 385 

58-2 3+50 1.30 118.8 2.95 5 0 U05 

58-3 5+00 1.50 117.9 7.96 5 0 385 

58-U 6+50 1.25 117.6 6.23 It 0 330 

58-5 

58-6 

59-1 

8+00 

10+00 

2+00 

i 

l.Uo 

1.60 

1.05 

117.6 

117.0 

116.9 

5.88 It 0 32^ 

U.5 2.32 5 0 2ltO 

59-2 3+50 1.10 117.9 0.75 It 32 300 

59-3 5+00 1.05 116.5 1.67 6 0 275 

59-1» 6+50 1.00 117.9 1.35 It 0 310 

59-5 6+00 1.05 116.6 1.13 6 0 300 

59-6 lo+oo 1.10 U6.3   Static tests   — 

Dependent Parameters 

Test 
No. 

Maxioun       Time to   Maximum 
Load cell   I» Plate 

Time to   Final 
t „ PUt« 

Reaction 
'(■w ; Displacement td, max 

x    Displacement   Velocity   JC 

'final max ' 

Computed   Time to   Kaxlmum Maximum 
Maximum     V  Positive Negative 

Acceleration   Acceleration .) 

58-1 

58-2 

58-3 

58-1* 

58-5 

59-1 

59-2 

59-3 

59-1« 

59-5 

kips 

9.06 

3-75 

8.89 

6.83 

6.53 

2.36 

1.18 

1.98 

1.61 

I.U7 

msec 

29 

11 

24 

21» 

22 

U6 

35 

51 

he 

ho 

in. 

2.06 

0.08 

2.10 

0.90 

0.71 

2.09 

0.22 

1.02 

0.79 

O.Ul 

msec 

1.5 

30 

l»7 

36 

36 

79 

50 

68 

61 

51 

in. Ips msec 

1.51» 87.8 16 

0.03 12.9 7 

1.83 82.3 17 

0.67 U8.0 11. 

0.51 1»0.5 13 

1.90 51.9 30 

0.16 7.5 23 

O.89 28.1» 30 

0.67 22.8 25 

0.31 1U.6 25 

■ 
36.7 

11.0 

36.5' 

27.5 

26.2 

12.0 

2.7 

7.8 

6.8 

h.h 

8 

-11.1 

-5.0 

-10.0 

■-8.1 

■7.3 

-3.8 

-1.1. 

-2.9 

-2.U 

-2.0 

average UC shear strength for cart x      "ne re.iatance near plat« 
^ average vane resistance for cart 

average UC wet unit wight for cart x       fettest »et unit »eight new t«it 
average posttest vet unit weight for cart 
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P = DYNAMIC COLUMN LOAD 

Tj s SHEAR STRENGTK OF SOIL 

p = MASS DENSITY OF SOIL 

NOTE:   DOUBLE-HEADED 
DASHED ARROW DE- 
NOTES INERTIA 
FORCE OPPOSING 
THE SENSE OF 
ACCELERATION   (o). 

FREE-BODY DIAGRAM 

Figure 3.1    Idealized test system and Iree-body diagram. 
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relation for surface footings. 
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0.2 

Figure 3.3 Dimensionless relation of maximum applied 
dynamic column load versus maximum footing displace- 
ment for surface footings (Reference 3)- 
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b«rf 

Figure 3^   Diraensionless relation between maximum 
applied dynamic column load and time to maximum 
displacement for surface footings (Reference 3)» 
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28 



m» mmmmv mnm- iii.!i'.i,i|,l*i!"v :    • 

CHAPTER h 

CONCLUSIONS AND RECOMMENDATIONS 

k.l   CONCLUSIONS 

The following conclusions are drawn from the results of this 

investigation: 

1. The form of the nondimensional relations developed previously 

for dynamically loaded surface footings, as given in Figures 3.2, 3.3, 

and 3.h, also holds for footings at shallow depth of burial in clay. 

2. The effect of shallow depth of burial on the nondimensional 

relations, as shown in Figures 3.5, 3.6, and 3.7, is small and can be 

considered negligible for design purposes. 

U.2   RECOMMENDATIONS 

As a result of this investigation it is recommended that the 

techniques employed in this investigation be used to study the influ- 

ence of greater depths of burial (up to D/b = k, if necessary) on the 

respjuse of footings in clay under dynamic loading. 
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APPENDIX A 

SOIL SPECIMEN CONSTRUCTION 

A.l    SOIL PROPERTIES 

The soil used in this study was a highly plastic clay found as a 

backswamp deposit alongside the Mississippi River near Vicksburg, 

Mississippi.    It is locally referred to as buckshot clay and is clas- 

sified as CH in the Unified Soil Classification System. 

The clay was air-dried from its natural water content of 30 to 

Uo percent to about 10 percent, mechanically processed, and stored 

for later use.    The average Atterberg limits for the processed clay 

were:    liquid limit, 60; plastic limit, 23; and plasticity index, 37. 

The specific gravity of the clay was 2.70.    Using the Standard Proctor 

test, the optimum water content was 23.3 percent and the maximum dry 

unit weight was 96.2 pcf.    Approximate amounts of minerals in the 

clay, as determined by X-ray diffraction, are as follows: 

Clay Fraction 
0.2 to 2.0 microns 

Clay Fraction 
less than 0.2 micron 

Montmorillonite 30^ 

Illite 25^6 

Kaolinite 2% 
o 

Quartz 20$ 

Montmorillonite 60$ 

Illite 15^ 

Kaolinite 15^ 

K-Feldspar 10£ 
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A.2 SPECIMEN CONSTRUCTION 

The procedures used to prepare soil specimens will only be gener- 

ally described here since a detailed description of the procedures 

used is presented in Reference 3« 

To prepare a soil specimen, the air-dried clay was mixed with 

water in a pug mill and placed in the soil cart in layers of 3-inch 

compacted thickness using a mechanical backfill tamper. 

The lift at the depth where the footings were to be placed was 

intentionally compacted 0.50 to 0.73  inch higher than the planned 

depth of burial. A straightedge was then used to trim away excess 

soil before the footing was set into place at the proper elevation. 

The surface was scarified prior to placing the next lift (see Fig- 

ure A.l). 

Openings were made in the specimen directly above the center of 

each footing to receive the load cell bearing tip, as shown in Fig- 

ure A.2, and at each of three corners to receive the extension rods 

of the linear-motion potentiometers used to measure footing dis- 

placement (see Figure A.3). 

The top surface of the cart was sealed with a polyethylene 

membrane and the clay allowed to cure for approximately two days to 

allow for equalization of moisture. 
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APPENDIX B 

TEST METHODS AND PROCEDURES 

B.l    TEST SYSTEM 

The test system used in this study consisted of a dynamic loading 

machine capable of producing controlled dynamic and static loads of 

up to 50,000 pounds; square aluminum plate footings; a compacted spec- 

imen of highly plastic, nearly saturated clay in a movable track- 

mounted soil cart; and electronic instrumentation support. A typical 

test setup is shown in Figure B.l. Detailed descriptions of the 

dynamic loading machine and its operation are presented in References 

1 and 3- 

B.2 MECHANICAL VANE SHEAR TEST 

Immediately before each footing test, mechanical vane shear 

tests were conducted using the device shown in Figures B.2 and B.3 to 

provide an estimate of the soil strength for the proposed footing 

test. 

Preliminary tests using the mechanical vane shear device in a 

3- by 3- by 1-foot-deep steel box filled with soil, compacted with the 

same procedure used in the soil cart specimens, indicated the need 

for control over the frictional component of vane resistance when 

testing at different depths. The mechanical vane was modified by 

constructing a projection on the vane shaft, as shown in Figure B.2, 
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that produced constant friction between the vane shaft and the clay 

when operating the vane at any depth below 2 inches.    The preliminary 

tests also showed that a vane resistance versus depth profile existed 

within each 3-inch-thick compacted lift. 

For each footing test, mechanical vane tests were conducted in 

a 6- by 8-inch grid pattern within a 12- by 16-inch area around each 

footing location and readouts of torque versus angle of rotation were 

obtained.    The depths at which vane tests were conducted were chosen 

so that each depth would represent readings of either the top, middle, 

or bottom of a lift both above and below the footing.    The mechanical 

vane shear device was calibrated before and after each series of 

tests using a moment arm of known length and weights. 

B.3   DYNAMIC AND STATIC TEST PROCEDURES 

Detailed descriptions of the dynamic and static test procedures 

axe given in Reference 3.    The data from a typical dynamic footing 

test axe shown in Figure B.U.    An idealized curve has been fitted to 

the computed column load curve and used for analysis purposes.    The 

various time parameters determined from the idealized curve are the 

rise time (t ), hold time  (t. )> decay time  (t.), and positive-phase 

duration (t ), as defined in the figure. 

B.k    SOIL SAMPLING AND TESTING 

After all dynamic and static footing tests on a soil cart were 
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completed, ten seunples were taken from the top 3 inches of the speci- 

men for water content and wet unit weight determinations.    Following 

this, six 8-inch-diameter by 9-inch-high undisturbed block samples 

were taken at the elevation of the footing tests. 

Three strain-controlled, unconfined compression tests were con- 

ducted on l.U-inch-diameter by 3"0-inch-high specimens from the top 

k inches of each of the six block samples.    Strain-controlled, un- 

consolidated-undrained, triaxial tests, with confining pressures of 

1, 3> and 6 kips per square foot, were conducted on 1.^-inch-diameter 

by 3-inch-high specimens taken from the top k inches of two block 

samples from each soil cart.    The triaxial test specimens were taken 

from the two block samples for which the unconfined compression test 

results were nearest the average for the cart.    All strength tests 

followed standard Corps of Engineers procedures  (Reference lU). 
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Figure B.2 Components of mechanical vane shear device 
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Figure B.k    Response histories for a typical 
dynamic footing test. 
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SOIL TEST RESULTS 
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10 
AXIAL STRAIN IN KRCCNT 

IS 20 

j                                         BLOCK 

TEST* 

INITIAL CONDITIONS UNCONF 
COMP 

STRESS 

KIPS PER 
SOFT 

SHEAR 
STRESS 

KIPS PER 
SOFT 

TIME" 
TO 

FAILURE 

MIN 

FAILURE   1 
STRAIN 

NUMBER 

LOCATION WATER 
CONTENT 

X 

DRY 
UNIT »T 
LB PER 
CUFT 

VOID 
RATIO 

SAT. 

STATION OFFSET 
IN. 

DEPTH 
IN. 

i      sa 2tn 7 B-17 C-l ze.s H.O 0.7«! •4.4 3.40 1.70 1« 10.0      | 

C-2 r.z 93.1 0.7»7 91.» 3.1« I.M 1« 10.0 

C-3 r.o 93.' 0.797 90.« 32« 1.B4 2S 15,0       | 

sa itfj 33 9-17 D-l 27.0 •9.7 7.«SS «3.« I.H 0.9« 7 4.9       I 
D-2 «.3 909 0.«41 «3.« 2.M 1.42 13 «.0      I 

D-3 27.2 91.9 0.«20 «B.« 2.4« 1.23 IS 5,5 

M 5»7S 7 8-17 El 269 91.2 0.«M «6.4 2.66 1.33 IS 6-0       i 

E-2 273 93.4 0.791 92.9 2.M 1.47 21 9.0      | 

E-3 27.1 92.9 0.100 90« 3.12 1.9« 22 •.0 

SB 7t25 33 B-17 F-l 27.3 92.0 0.«IB «9.4 2.M 1.2« 17 7.0       1 
F-2 27.S 93.S 0.7«S 93.4 2.M 1.47 24 10.0      | 

F-3 27.S 93.1 0.797 »25 2J0 1.40 32 11.0 

SB »00 7 S-17 0-1 27.1 94.« 0.7« •4.4 3.0« I.t9l n «,o    ! 

94 27.1 93.9 0.7B4 92,6 3.0« 1.S3 14 B.O      | 

0-3 »7.1 93.5 0.7«B 92.1 3.1« 1.9« 22 11.0      | 

SB nx 33 »-17 H-l 2S.0 93.« 0.7M 95.2 2.«« 1.43 It 12.0 

H-2 27.3 «2.3 0.«13 90,0 2.1« 1.0« 9 5,5 

H-3 26.1 «2.« 0.«03 «9.« 2.90 1.4S IS 10.0 

AVERAGE 27.1 92.« «.«03 90.7 2.«9 1.43 " 6.«       | 

STRAIN-CONTROLLED TEST ON 1.4-IN.-OIAM > 3.0I-IN.-HOH SPECIMEN 
TAKEN FROM 0- TO 4.|N. DEPTH OF THE BLOCK SAMPLE. 

RATE OF STRAIN CHANOED FROM It PER MINUTE TO 2.5* PER MINUTE 
AT FROM 4 TO «» AXIAL STRAIN. 

Figure C.l   Unconfined compression test results, cart 58. 
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AXIAL STRAIN IN PIKW 
15 20 

SLOCK 

TEST* 

INITIAL CONDITIONS UNCONF 
CQMP 

STRESS 

KIPS PER 
SCFT 

SHEAR 
STRESS 

KIPS PER 
SO FT 

TIME" 
TO 

FAILU'•><■. 

MIN 

FAILURE 
STRAIN 

LOCATION WATER 
CONTENT 

ORT 
UNIT »T 
LB PER 
CUFT 

VOID 
RATIO 

SA";. 

atR STATION 
FT 

OFFSET 
IN. 

DEPTH 
IN. 

St 2*7S 7 «-ISS C.I 2«.2 tl.4 0.930 9.0 2.2« 1.14 1« 9.3      { 

CJ 2« .6 90.0 0.tS9 99.? 2.00 1.00 IS 1 .0      ) 

C-3 2(.4 92.0 0.111 93.0 2.1« 1.0« 1« 1S.0      I 

SI <»2S S3 4.1 S.S 0.1 2«.S tt.O O.I3t 91,1 2.12 1.0« 23 IS.O       j 

(W 2t.2 K.l 0.tS7 M.2 2.22 1.11 21 15.0      j 

04 2aT tl.O o.tst tl.t 2. 0 1.0« 20 13.2 

5« 5»7S 7 4-13.S E-l H« 90.1 0.t43 10.3 2. « 1.0« 20 15.0      i 

EJ 2It 90.1 0.143 tl.t 2. a 1.0« 1« I3.S       1 

E-3 2tl t .7 0.(24 tS.7 2.04 1.02 24 1 .0      1 

N 7>2S S3 4-13.S F-l 2t3 90.0 0.IS9 tl.4 \M 0.9» 21 14.5      j 

F-2 28S t .4 0.130 92.0 2.2« 1.  3 IS 12.2 

F.3 2*7 90.2 o.tss 90.0 2. t 1.0« 1« 1   .5        j 

St MOO 7 4.13.S 8-1 2t.O 90.1 0.957 90.7 2. 0 1.0« 1* 13.»       1 
OJ 2*0 90.» 0.t43 «2.2 2. t 1.0« M 1 ,1       | 

0.3 289 90.7 O.MS tl.t 2.0« 1.0« 22 lt.0 

St 9.X S3 4-I3.S H.I 28« to.o o.tst «t.t 2.0« 1.03 22 1 .5      ! 

H4 Vi 1 90.» O.MS tl.2 2. 2 1.0« '• 1 .8      | 

H.3 215 »2.0 cut «3.4 2.30 1. s 1« 13.0       1 

AVERAGE 2*7 90.B 0.142 «1.2 2. 4 1.07 20 14.2      \ 

'   STRAIN.CONTROLLEO TEST ON I .«.IN..OIAM a 3.01 -IN.-HIGH SPECIMEN 
TAKEN FROM 0- TO «-IN. DEPTH OF THE BLOCK SAMPLE. 

**  RATE OF STRAIN CHANGED FROM 1» PER MINUTE TO 2.5\ PER MINUTE 
AT FROM 4 TO «1 AXIAL STRAIN. 

Figure C.2   Unconfined compression test results, cart 59. 
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APPENDIX D 

DETAILED RESULTS OF FOOTING TESTS 
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Figure D.l   Dynamic test 58-1. 
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Figure D.2   Dynamic test 58-2. 
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